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Abstract

In counter-current chromatography, the concentration profile of a single component feed has a steady diffuse boundary
located at the opposite side of the shock layer from the feed point. The properties of this feature, unusual in chromatography,
are discussed. An analytical solution for the profile of this boundary is derived. It is valid in the case of fast mass transfer
kinetics. It explains clearly the formation and stability of this steady-state concentration profile and the influence on its width
of axial dispersion and the mass transfer kinetics. Numerical calculations of this steady-state profile were also carried out for
the sake of comparison. The results of this study suggest that a similar phenomenon may take place in simulated moving bed
operation. They improve our understanding of the counter-current moving bed and simulated moving bed processes in

chromatography.
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1. Introduction

In two previous publications, we have discussed
the ideal model solution of counter-current chroma-
tography [1] and the profiles of the shock layers
which replace in actual columns the concentration
shocks predicted by the ideal model [2]. The latter
study allowed the determination of the optimum
liquid- and solid-phase velocities in counter-current
liquid chromatography [2]. In this work, we pointed
out that, when a shock layer is formed in the column,
it may move either in the direction of the liquid
phase (when the solid-phase velocity is low or
moderate), or in the direction of the solid phase (if

* Corresponding author. Address for correspondence: Department
of Chemistry, University of Tennessee, Knoxville, TN, 37996-
1600, USA.

the solid phase is fast enough). At the opposite end
of the band from the shock layer, there is a steady
diffuse concentration profile, whose location and
profile depends on a balance between apparent axial
dispersion, and the velocities of the counter-current
liquid and solid phases. This diffuse profile origi-
nates (C=0) in a point of fixed position. This point
and the shock layers are located on the opposite sides
of the feed point [2].

The shape of this steady diffuse concentration
profile was not investigated in our previous work. It
is important to do so, however, for a better under-
standing of the separation processes in counter-cur-
rent chromatography and in the simulated moving
bed chromatograph. The existence of this steady
profile and its properties are useful to know to
develop applications of this new preparative tech-
nique. Finally, there are not many examples of
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steady-state zones in chromatography [3] and this is
an interesting example.

The aim of the present work is the study of the
shape of this steady diffuse profile, the derivation of
an analytical solution in the case of fast mass transfer
kinetics, the illustration, and the discussion of this
solution which shows clearly the mechanism of
formation of this steady-state concentration profile.

2. Theory

This work is a continuation of previous inves-
tigations on counter-current liquid chromatography
[1,2], in which the mathematical model of this
implementation has been discussed in detail. Accord-
ingly, only a brief description of the model is given
here.

2.1. The model of steady-state counter-current
liquid chromatography

We consider the same counter-current liquid chro-
matography system as in [1]. Through this entire
work, unless otherwise specified, we assume that the
equilibrium isotherm is accounted for by the Lang-
muir model. The feed point is at the center of the
column. When the solid-phase velocity is sufficiently
low and 1—BFa>0 (where B=the ratio of the solid
to the liquid phase velocities; F=the phase ratio;
a=the initial slope of the equilibrium isotherm), the
sample moves in the direction of the liquid phase.
The profile of the front of the band is a diffuse
concentration profile for a linear isotherm. It be-
comes a shock layer with a constant pattern for a
Langmuir isotherm. This front propagates along the
positive part of the column, from the central feed
point (x>0, x=z/L, fractional column length).

However, because of the apparent axial dispersion
and because the saturated solid phase moves at feed
point in the direction opposite to that of the liquid
phase, a portion of the sample moves in the direction
of the solid phase, toward the other side of the feed
point. This portion tends to propagate at counter-
current of the incoming solvent. There will be a
steady-state, dynamic equilibrium between these
forces, the resultant of the velocity contribution of
the two phases and axial dispersion. The opposite

situation takes place when the solid-phase velocity is
high [2]. In this case, a shock layer or a diffuse
concentration profile migrates backward, along the
negative part of the column toward the solid-phase
exit, depending on the nature of the isotherm (Lang-
muirian or anti-Langmuirian, while a steady-state
concentration profile forms at the beginning of the
positive side of the column. By contrast with our
previous publication [2], we are only interested here
in this steady concentration profile.

The system of equations of counter-current liquid
chromatography under steady-state can be written
under dimensionless form as in our previous papers
[1,2]:
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with the dimensionless parameters

T=ut/L, x=2z/L (4a)
= o, Pe=2E g =1L 4b
B=vlu, e=D, t=— (4b)

where C and ¢ are liquid and solid-phase con-
centration, respectively, Pe and St are the Peclet and
Stanton number, respectively, L 1is the column
length, # and v are the liquid and solid-phase
velocity, respectively, D, is the axial dispersion
coefficient, 1, z, and x=z/L (—1<x<1) are the time,
the axial position, and the dimensionless axial posi-
tion, respectively. a and b are the numerical co-
efficients of the Langmuir isotherm (f(C), Eq. 3).
When b=0, we obtain the linear or Henry’s law
isotherm. Because we consider a steady-state profile,
there is no kinetic equation, the concentrations are
constant at any x in the corresponding range around
x=0, and ogq/at=0.

The boundary and initial conditions of the system
of Egs. 1-3 are:

Cx, 7=0)=0, C(0, 7>0)=C,,
q(0, 7> 0) = f(C,) (5)
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They correspond to a step injection at the center
(x=0) of the chromatographic column. It is worth
noting that the boundary condition for g is used only
for the numerical calculations, but is not useful in the
steady-state analysis because of the assumption made
that the mass transfer kinetics are fast (see below Eq.
6).

2.2, Steady state analysis

When the mass transfer kinetics are fast, St has a
large value and g approaches closely, its equilibrium
value, f(C). In such a case, the last term of Eq. 2 can
be replaced by the derivative of f(C) and this
equation can be rewritten as follows

d af(C
g=fO+ £~ + £ L (®)

Eq. 1 can be integrated once by respect to x,
which gives
1 aC
C—BFq—P—e§=JO N
where J, is the constant mass flow, which can be
determined from the boundary condition at the feed
point. As steady-state is approached, the mass flow
across any section of the column from the feed point
to the end of the steady concentration profile tends
toward zero. At steady-state, J,=0.
Combination of Eq. 6 and Eq. 7 under steady-state
conditions leads to

C . B’FAC) ]
dl:?i§'+ St
C - BFf(C)

=dx (8)

In this equation, x may be positive or negative,
depending on which side of the column the steady
concentration profile is formed. When the solid-phase
velocity, 3, is small, C—BFf(C)>0 and, as ex-
plained above, a steady-state concentration profile is
formed on the negative side of the column (x<0),
close to the feed point. When the solid-phase velocity
B is large enough and C—BFf(C)<O0, the steady-
state concentration is formed on the positive side of
the column (x>0). To summarize, the position of the
steady-state profile is such that the inequality (C—

BFf(CHx<0 is always valid. Furthermore, Eq. 7
gives a profile which is symmetrical by respect to x,
which means that the steady-state concentration
profiles obtained under conditions in which C—
BFf(C) is either positive or negative are symmetrical
by respect to the feed point.

Using the condition at the feed point, i.e., x=0,
C=C,, Eq. 7 can be integrated provided that an
explicit equation is available for the equilibrium
isotherm. Two important particular solutions are
discussed.

Linear isotherm
When the isotherm is linear, »=0, Eq. 8 can be
easily integrated and

(1 —fFa)x ]

with (1—BFa)x<0 and A=1/Pe+B>FalSt.

This solution shows that the steady concentration
profile is an exponential profile in the case of a linear
isotherm. More particularly, it is a vertical line when
(1-BFa)=0.

Cc=0C, exp[ 9

Nonlinear Langmuir isotherm
In this case, integration of Eq. 8 gives

B (1+bC A [ CoC+ 1~ Fap)
st ™ \1+bC,) " 1—BFa " | C,bC + 1 — FaB)

=x (10)

with (1—BFa)x<0 and A=1/Pe+B°Fa/St. This
equation simplifies in the particular case for which
(1—BFa)=0. We obtain

B, (1*bC\_  AG=C
st "\1+8C,) " " h ¢,C

an

3. Illustrations and discussion

Since the analytical solutions obtained, i.e., Eq. 9
and Eq. 10, are symmetrical by respect to x, depend-
ing on the sign of (1—BFa), as discussed above, the
following discussion can be limited to the case for
which (1—8Fa)>0 and x<0. The same steady-state
profile, but located on the opposite side of the
column (i.e., x>0) will be obtained in the opposite

]
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case (1—BFa<0). For a given compound and a
given chromatographic system, the only difference
between the profiles corresponding to forward and
backward propagation is in the moving front. As-
suming a Langmuir isotherm, this front is a shock
layer in the case of forward migration and a diffuse
boundary in case of backward migration. The exact
shape of these profiles was discussed in our previous
work [1,2] and equations given to account for them.
Here we are only interested in the steady profiles.

The numerical results calculated and used for the
illustrations presented below were obtained using the
nonsteady kinetic model (time model) of counter-
current chromatography discussed in our previous
paper [2]. The use of a nonsteady model allows the
calculation of some concentration profiles and the
illustration of their propagation, showing how the
steady-state regimen of the diffuse boundary profiles
can be reached, and allowing comparisons with the
analytical solution derived above, in this work, using
the steady-state model. The following values of the
parameters were used for these illustrations, Lang-
muir isotherm parameters, a=2.0 and »=0.02 ml/
mg, phase ratio, F=0.25, i.e., k,=0.5.

3.1. Linear isotherm (b=0)

Because the isotherm is linear, there is no shock
layer in this case. The profile of front moving in the
direction of the mobile phase is diffuse and its profile
is given by the classical erf function, as for a
breakthrough curve under linear conditions.

Numerical solutions for the steady-state and
propagation profiles
Fig. la shows three steady-state, axial concen-

tration profiles, obtained as numerical solutions of
the nonsteady-state model, for 8=0.5, on the nega-
tive side of the column (x<<0), at three different
dimensionless times, 7=0.5 (dotted line), 0.75
(dashed line), and 1.0 (solid line). All three curves
are exactly overlaid and cannot be distinguished.
This confirms that these axial concentration profiles
are steady-state profiles and that they do not change
while time is passing.

The corresponding axial concentration profiles on
the opposite side (i.e., positive) of the column from
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Fig. 1. Linear isotherm. Results of the numerical calculation of the
steady-state and propagation profiles. Pe=200, $t=1000. (a) 8=
0.5. Profiles calculated for 7=0.5 (dotted line); 0.75 (dashed line);
and 1.0 (solid line). (b) B8=1.0. Profiles calculated for 7=0.8
(dotted line); 1.2 (dashed line) and 1.6 (solid line).

the feed point are also plotted in Fig. 1a, to show the
concentration distribution in the whole column.

Figure 1b shows similar results, with 8=1.0, at
three different times, 7=0.8 (dotted line), 1.2 (dashed
line), and 1.6 (solid line). The broadening of the
steady-state profile and of the forward moving
concentration profile at the three instants selected
during its propagation are more intense for this larger
value of .

Comparison between analytical and numerical
solutions

The numerical solution of the kinetic (i.e., non-
steady-state) model and the analytical solution of the
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steady-state model (i.e., Eq. 9) are compared in Fig.
2. Two different cases are illustrated, corresponding
to B=0.5 (numerical solution, solid line, analytical
solution, dashed line) and B8=1.0 (numerical solu-
tion, long-dashed line; analytical solution, dotted
line). A more diffuse steady-state profile is obtained
for the larger value of 8 because, as predicted by Eq.
9, when (1—BFa) decreases, a larger value of x is
needed to achieve the same concentration. Fig. 2
shows that an excellent agreement is obtained be-
tween the numerical and the analytical solution. This
confirms the validity of the analytical solution.

Effects of the dispersion coefficient and the rate of
mass transfer

The analytical solution (Eq. 9) shows that the
contributions of the Peclet number and the Stanton
number are inversely additive. In other words, the
contributions of the axial dispersion and the mass
transfer resistance are additive. This property is
similar to their additivity in linear and nonlinear (i.e.,
when a shock layer is formed) chromatography. The
only difference with these other cases is in the value
of the coefficients of this linear relationship.

As shown by Eq. 9, a larger value of the Peclet
number, Pe, or of the Stanton number, Sz, leads to a
sharper steady-state profile. This is illustrated in Fig.
3a. The solid line corresponds to Pe=1000 and
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Fig. 2. Linear isotherm. Comparison between the analytical and
the numerical solution of the steady-state profile. Pe=200, St=
1000. 8=0.5. Numerical solution, solid line; analytical solution
(Eq. 10), dashed line. 8=1.0. Numerical solution, long-dashed
line; analytical solution (Eq. 10), dotted line.
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Fig. 3. Linear isotherm. Effects of the axial dispersion and mass
transfer resistance. B8=1.0. (@) Solid line, Pe=1000 and St=
1000); long-dashed line, P¢=1000 and St=500; and dashed line,
Pe=100 and Sr=1000. (b) Pe=200 and St=200: numerical, solid
line; analytical, dashed line, Pe=200 and S¢=100: numerical,
long-dashed line; analytical, dotted line.

S$r=1000. It gives a sharper profile than the long-
dashed line, corresponding to Pe=1000 and St=500,
while the dashed line, corresponding to Pe=100 and
Sr=1000, allows for a very diffuse steady-state
profile.

The opposite situation is observed, however, at
low values of the Stanton number, as illustrated in
Fig. 3b. The profiles compared are obtained as
results of the numerical calculation for values of the
Stanton number which are no longer large enough
for the assumption made in writing Eq. 6 to be valid.
The solid and long-dashed lines correspond to St=
200 and 100, respectively. In this case, the larger
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Stanton number leads to a more diffuse profile than
the smaller one. The reason is that a smaller value of
the Stanton number means simultaneously a less
strongly adsorbed component and a smaller amount
of this component carried by the solid phase into the
negative side of the column. Accordingly, a less
diffuse steady-state profile is obtained. This is con-
trary to the prediction of the analytical solution, Eq.
9, represented by the dashed line (Sr=200), less
diffuse than the dotted line (S+=100). The analytical
solution is no longer valid, however, as just ex-
plained, because the assumption of a large value of
St used to write Eq. 6 and derive Eq. 9 is no longer
valid.

3.2. Nonlinear isotherm

The front of the forward moving band is now a
shock layer provided the concentration step, the axial
dispersion coefficient, and the rate of the mass
transfer kinetics are sufficiently large.

Numerical steady and propagation profiles

Fig. 4a and Fig. 4b show three series of steady-
state (left) and propagation (right) profiles obtained
with a Langmuir isotherm for values of the reduced
time, 7, of 0.5 (dotted line, 0.75 (dashed line), and
1.0 (solid line), respectively. In all three cases, B=
0.5. Note that in this case (b)=0.02 ml/mg), the
product bC is equal to 0.5, which indicates strong
nonlinear behavior. The three steady-state profiles
overlay exactly. The three propagation profiles are
qualitatively very similar to those in Fig. 1a and Fig.
Ib. The difference between these -two series of
profiles is that, in Fig. 4a and Fig. 4b the isotherm is
no longer linear but follows the Langmuir equation.
Thus, the front of the forward moving bands in Fig.
4a and Fig. 4b are shock layers. For this reason, they
are somewhat steeper than the corresponding ones in
Fig. la and Fig. 1b, they exhibit constant pattern
behavior and propagate at a constant velocity (equal
to the shock velocity) along the column without
changing shape.

It is striking to observe that, although the profile
on the left side of Fig. 4a is much steeper than any of
three profiles on the right side, the left profile is a
diffuse boundary, albeit a steady-state one, while the
right three profiles are shock layers. This is a known
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Fig. 4. Langmuir isotherm. Results of the numerical calculation of
the steady-state and propagation profiles. Pe=200, Sr=1000. (a)
B=0.5. Profiles calculated for 7=0.5 (dotted line); 0.75 (dashed
line); and 1.0 (solid line). (b) 8=1.0. Profiles calculated for 7=0.8
(dotted line); 1.2 (dashed line); and 1.6 (solid line).

property of steady-state profiles [3] which, unfor-
tunately, are rare in chromatography.

While there are some visible differences between
the propagation profiles in Fig. 1 and Fig. 4, the
difference between the steady-state profiles in Fig. 1
and Fig. 4 is too small to be observed here. It will be
discussed later.

The profiles shown in Fig. 4b are similar to those
in Fig. 4a but a different value of B(1.0) is used and
the reduced times are 7=0.8 (dotted line), 1.2
(dashed line), and 1.6 (solid line). The main differ-
ences with the profiles in Fig. 4a are slightly more
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diffuse steady-state and propagation profiles and a
different shock velocity.

Comparison between analytical and numerical
results

Fig. 5 compares the profiles derived from the
analytical solution of the steady-state model
(Eq. 10) and those calculated numerically, for two
values of B: 0.5 and 1.0. We observe, first, an
excellent agreement between the analytical and the
numerical results. Second, comparing Fig. 2 and Fig.
5, we see that the steady-state profiles are narrower
for the nonlinear isotherm than for the linear one.
Finally, as in the case of the linear isotherm (Fig. 2),
a more diffuse profile is associated with the larger
value of B(B8=1.0).

Effects of the dispersion and mass transfer

The results obtained in this investigation are
similar to those reported above in the case of a linear
isotherm (Fig. 3). They are summarized in Fig. 6a
and Fig. 6b. When the Stanton number is relatively
large, larger values of the Peclet number or Stanton
number lead to sharper profiles. This effect is
illustrated in Fig. 6a by the solid line (Pe=500 and
St=2000), the long-dashed line (Pe=500, Sr=1000)
and the dashed line (Pe=200, Sr=1000). However
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Fig. 5. Langmuir isotherm. Comparison between the analytical
and the numerical solution of the steady-state profile. Pe=200,
St=1000. S=0.5. Numerical solution, solid line; analytical solu-
tion, dashed line. 8=1.0. Numerical solution, long-dashed line;
analytical solution, dotted line.
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Fig. 6. Langmuir isotherm. Effects of the axial dispersion and
mass transfer resistance. 8=1.0. (a) Solid line, Pe=500 and
S:=2000; long-dashed line, Pe=500 and St=1000; and dashed
line, Pe=200 and Sr=1000. (b) Pe=500 and S¢=1000: numerical,
solid line; analytical, dashed line. Pe=500 and Sr=200: numeri-
cal, long-dashed line; analytical, dotted line.

the profiles in Fig. 6b show that, when the Stanton
number is not large enough (e.g., St=200, long-
dashed line), a smaller Stanton number can give a
sharper profile, as calculated with the numerical
method (compare long-dashed and solid line). The
reason is that a smaller Stanton number means a
smaller amount of component adsorbed in the solid
phase and a smaller mass brought by the solid phase
into the negative side of the column; as a conse-
quence, the steady-state profile is less diffuse than
with a somewhat larger Stanton number. This ap-
pears to be in contradiction with the prediction of the
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analytical solution (Eq. 10). However, this result is
explained by the failure of the assumption made
earlier that the Stanton number is large. Thus, Eq. 10
is no longer valid, which explains the disagreement
between the solutions of the analytical and numerical
equations.

4. Glossary of symbols

a, b first and second parameters of the Langmuir
isotherm

c liquid phase concentration of the component

D, axial dispersion coefficient

F phase ratio

k mass transfer coefficient

L column length

Pe Peclet number (=uL/D,)

q solid-phase concentration

St Stanton number (=kL/u)

t time

u liquid phase flow velocity

v solid-phase flow velocity

X dimensionless axial position in the column
(=z/L)

z axial position in the column

4.1. Greek symbols

B ratio of the solid- and liquid-phase velocity
(=v/u)
7  dimensionless time (=ut/L)
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